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Introduction

The first part of the article reports on the methods of computing

excitation cross-sections of neutral atoms and of positive ions by elec-

tron impact. The article demonstrates that it was necessary to consider

both the ion field distribution and the effect of strong coupling in the

case of positive ions and optically permissible and intense transitions.

The collision ion is represented by Coulomb's waves and the strong coup-

lings are taken into account by applying variation methods in computing

the matrix R instead of computing the diffusion S matrix -- as in the

Born approximation.

We have applied, in the second part of the article, the theory of

the Racah tensor operators to the calculation of potentials intervening

in the collision problems. This method permits the computation of ex-

~~~~~~~~~~~~~~~~~~~~~\
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citation cross-sections of atoms and complex ions possessing more than

one electron of chemical value. The computations were made for applica-

tion in a very general case -- for complex transitions -- and may be

used in the majority of cases involving possible transitions. We did

not calculate the exchange potentials.

The third part of the article deals with the application of the

method to the computation of cross-sections in the case of resonance

transitions s - p of isoelectric series of lithium and sodium.

All these various approximations are discussed and the results

are compared to those obtained by using the method -- excessively work-

consuming -- of solving coupled equation problems as well as to those

obtained by the easily calculated approximations of Bethe and of the

"collision impact parameter". It has been confirmed that the impacts

corresponding to the large kinetic moments are predominant with the ex-

ception of areas close to the excitation threshold. Consequently, semi-

classical approximation may also yield good results as well as the sim-

plified approximation of Bethe -- with the provision that the effect of

strong couplings will be taken into account.

1. Method of computing excitation cross-sections

The investigation deals with an atom in the cLM,SMi state, where

alpha designates the configuration and the intermediary couplings of

the atom LSMLMS is the orbital angular momentum, the spin and their pro-

jections upon the axis of the Z. The state of the atom will be wholly
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characterized by the skew-synmnetric 'amplitude probability '(c.LMSMS j )

where represents the group of coordinates r,, r ., r n of the N atom-

. . .~~~~~~~~~~~~~~~~~~~~
ic electrons (r= (ri, ri, asi)).

In a collision problem an electron characterized by its initial

velocity rate v and by the projection of its spin m upon OZ passes
g

close to the atom. Upon the collision the atom is in the aVL 'MS M1.

state and the ultimate state of the collision electron is characterized

by v'and m'.
g

We will use the following atomic units:

(m = e = = ).
e

Instead of dealing with velocity we will define the impulse

mv/l. k is numerically equal to the kinetic energy of the electron in

2 units of 13.60 e V, and m is the mass of the electron.
e

The amplitude probability represents the primary electron associa-

ted with an atomic level and it can decompose into sub-waves correspon-

ding to various orbital ,angular moments. -

9(k, ma) = (k) (ms) = (k1mm). ()
lml

The wave function in the overall system -- atom and electron --

will build itself up in accordance with the added kinetic moments pro-

perties. If LT and ST designate the total angular moment L +I

and the total spin S + s of the system with N + I electrons, we will

obtain when presenting coupled moments rF oLS1LTMTSTM. the fol-
· ._ _ .. ...

lowing expression:

-C- LILT T8iST

T (r RrN+l) = C mC mMT .....

M-M' (2)
I nlms 

x F(OLMLSMs. R).q(klmim| rN+,). /
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This wave function will not be skew-symmetric in relation to the

exchange of the N + 1 electron with one of the N atomic electrons.

If the exchange is disregarded, the solution of the Schrddinger.

equation of the system:

[H(R,L+,) - E]W(R,,+) = O (3)

could develop along the following:

-(R,rn+,)= Eqr R' |,rN+..). ;

However, if the exchanges are to be taken into consideration the

total overall system should be represented by a linear and skew-sym-

metric combination of the type:

r' i -(5) -
*(r' I;;..;, ;,+i . .. .rN+, ri)

where the angular moment I of the free electron is affected by the elec-

tron i.

Radical equations. -- The cross-section is affected by the asymp-

tomatic shape of the radial functions of the collision electron. We

will, therefore, develop the radial component in

p(klml~m, rN+) = IJ ;N+l)Ylml(rN+l) -- Fkl(r'4 (6u

where the Yil (r) are the normalized spherical harmonics, such as:

Yl',m,(r)Ylm(r)dr = 8tt'mm' (7)

with r
h r _ et dr = sin OdOd

9
.

It is expedient to introduce the function, as suggested by Percival

and Seaton (13) in the coupled development F

F(r | RrN+lia+l) E C mM (S T
brnbi ,l I~S/sM 

S S

L.Smlm ! ''

'x W(,LSMLMI I R)8[11,1I1 ad+i1Ylm 1 (rN+l)
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function of all the variables with the exception of the radial variable

r.
n+11 

In this development the wave functions of the overall system will

be as follows:

Wi(r IRrN+i) -

= ZW(¥ RrN+xs+l) - Fr(r' rN+r). (9)
r

The asymptotic shape of tis wave function contains a plane wave

associated with the initial atom and with diffused waves associated with

all other atoms. Here r is the initial state of the system.
In order to determine the radial equations which must satisfy the

-r(F'r .+i)'we shall isolate the radial components by effecting the scal-

ar product

I tul (Fllrl+ 'cr~+')[H--E]~FF Irrs+,)Adrm+,da,,+,

'1o)

integrating in the entire space H, r.+, GN+1.

The total hamiltonian will be presented as:

[[Rvi, ZN+ I] --- I-I,( R) +- H2( N+) - rN + ,i'
i-l

H (R) is the atom hamiltonian and affects only atomic wave func-

tions. 

2 (rN+l) -- AN+r2 rr+

is the free electron hamiltonian in the nucleus field. Z is the charge

of the nucleus.

.rN+, i is the distance between the collision electron and the

atomic electron i.

On the other hand, the total energy of the system is preserved:

E = E +Ia'o-Eo-k (12)
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where a shows the state of the atom aLSMLM,.

Radial equations are obtained:

F ! ( + ,l ) 2 r+) 
- + + , I

= 2 2Vrr-Fr-(r'r+i) (13)+

with .

I i (rN,)-= f'I';(r1rN+laN+l) .N~~~~~~~~~~~~~~~~~~~~~~~
Z FN(r I+fT xr(H~rr + Ir,-+,)~r + :d1) 1 (4

i~~l ~I
-- Er ' Tr'(lrN+,aN+l)didrN+ldam+l, (14)

Thus, we have to solve a system of coupled differential equations.

In the collision problem if the total angular momentum and the total

ST T T T' T T' T T'
spin are preserved and we obtain L L , S = S ,ML =ML MS =MS

In addition, the Vrr- potentials in the LS coupling are independent of

~~~~~~~~~~T T ThrdaS and independent in the choice of axes, thereby of Ms ,7. The radial

functions will therefore depend only upon the parameters of ~LSILT'.

In order to solve this type of equations system, even with the

aid of computers it will be necessary to make various approximations.

In addition to limiting the number of the alphaLS levels of the atom we

will have to disregard the continuous states implied in principle in the

summation of equation (9). If only two levels are investigated, for in-

stance, the alphaLS initial level and the alpha'L'S' final one all the

processes: S tLS 'L'S'

will be neglected which could disturb the aLS- a'L'S',process. Coupling

between various states of the system is a direct result of the coupling
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between the preceding equations.

In accordance with the principle of conservation of parity we must

have: (- 1)+L+ = (_ I)L'+I (5)

Born and Coulomb-Born Approximations

We start by disregarding any coupling between the states of the

system. We cal FTthe initial state and 'I the final state. The to-

tal wave functions ',ill then be reduced to:

%'(r I +,)='(r I R r. +,o.+ ).Fr(r| r,.+,).11+1 (06)

The radial equations will be reduced to. two uncoupled equations:

[d _( + +) 2Z 2 - + ~ + k:] ;rr .r.+,)
dK+1 r.+l .+

= 2VrrFr(r Ir . + , ) (I

d- d ' (+ )+ 2Z /.1 (])(r'
dr. 2 + X r5+ + I( I rN .)I

r. '= 2Vr'r',r',(' I r,+,).

In the Born approximation only the asymptotic form of the potentials

is taken into consideration. For rN+ 1 >> ri, we have r+,i- r,+~ and

N
Vrr rN+L

In this manner two equations of the type:

[ d '_1(1±+ ) 2(Z- N)

dr+1 - r(+ + kA.1(rr¢+)=O (IS)

are found, where the radial function depends only upon k, 1 and Z - N = z.

In case of a neutral atom z = 0, the two conditions for limits are:

Fkl(o) = 0 Fx$(r-> ¢o) - k-12 sin kr - ] (9)

we obtain, in fact:

F'j(r) = k-1i/,(kr) : (19')
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with

ji(kr) [Lr]krlJ+h(kr)

where J1+ is the Bessel spherical function.

In the case of an ionized atom the same approximation will be desig-

nated as the "Coulomb-Born approximation" to precisely point out the

fact that the Coulomb potential has been taken into account in z/rN+1

while determining the radial function.

The two limit conditions are:

FI,'(o) =o l'kl'(r - o) - Ic-1/2 si [r --2 

+ ilog (2kr) + arg F l(+ I- i)] (20)

It can be proven that:

nZ

l'kt ( r ) i r(2I - r(r)i

~l + I-i--,},21 + 2,--2ikr (2)

where F (a,b,t) is the confluent hypergeometric function.

In the Born approximation -- as can be now observed -- the func-

tions of an approximated wave of the collision electron are plane waves

both after and prior to the collision. When they are computed no con-

sideration is given to the disturbance due to waves diffused by all pos-

sible states of the system.

In general, solutions of coupled equations do not have the asymp-

totic forms (19) and (20).

If we would like to present the system in the state r we would
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have to know all the functions Fr-(rlr) -- each a function of one

D

of the states F"rIpossible in the system. -

Each radial function will have an asymptotic form (]16):

Fr-(r| r) - kjJ/2[rr' sil) (kNr - -- )

+ Brv cos (kr - 2

for the neutral atoms. For positive ions it is sufficient to substitute

the sine and cosine functions by:

k"r - - + - log (2k"r) + arg I X - 1'

When the coupling is disregarded (F"= F) the forms are easily detected

(19) and (20). The terms of the matrix R called the reactance matrix,

1Irr- show amplitudes of diffused waves which correspond to all possible

states of the system.

Upon a numerical resolution of the differential equation system (13)

it is possible to conceive the definition of the terms of the R matrix

starting from the asymptotic forms of solutions.

Variational Method Applied to the Computation of R

In order to compute the terms of the matrix R it should be possible

to solve, in a precise manner, the equation of the system:

[H(R, r) - E](R,) = o. (23)
We have disregarded the exchange and we have seen that in order to.

solve the system of coupled equations we should limit ourselves to a small

number of states. In the Born and Coulomb-Born approximations, we

have substituted in the total hamiltonian H and the terms of electro-
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-N 'I!

static interaction by their asymptotic expression N
rN + ,i ~. rNq-1

i=1

Instead of: - - .

IlR,) l(A V N+1 N+l rN+I,i 14 lZrN + 
i=-

we have, in this last case, used the approximated hamiltonian H' as:
N

1-6I-I -rH,+, i ,-+ ' (25)
i--1

H' is, then, an approximated hamiltonian. We can solve the equa-

tion: [H'- E]Fr(R0r)= o

whose precise-solutions are approximate functions '

By generalization of the variational method of Hulthen and Kohn (12)

applied to an inelastic case it is possible to find the precise expres-

sion for terms of the matrix R in relation to approximate expressions

and errors ST related to the wave functions.

Rrr' (exact)= Rrr' (approx.) - 2Lrr'

2f 8hi1- - E]S'r'dr.dH (26)

with: 
Lrr, J f r-i - IH']ir'drd}l (27)

where H is the exact hamiltonian.

A very satisfying evaluation of the R terms can be arrived at by

disregarding in the Rrr' (exact)expression the square-law terms in relation

to T errors.

In the approximations of Born (B) and Coulomb-Born (C.B.) we have

seen that all the couplings were disregarded and that asymptotic forms

of radial functions Fr,(FI r) were presented by (19) and (20) for r= F

For F W F" , however, there is: Fr,(Prl r)= o.

Consequently, the terms Rrrl (approximate) are zero and we obtain sim-.:~~~~~~~~~
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ply: RBr' 2f Jp (Born) I H- H' I 'r, (Born) drdR
(28)

with H - H' given by the equation (25).

This .last expression should be correlated with that of the poten-

tials VrrJ We find that:

i(13orn ou CouLO.Mo-Born1) (9)

2j0 [l(,'N+I)[ F'.- rr'+]Fk.,'(rN+,)drN+l.,

The radial functions Fkl(rN+,)Dr positive ions (C.B. approximation)

are given by equation (21). Satisfactory results may also be obtained

for terms of the R matrix by using solely the approximate wave functions:

plane waves in the case of neutral atoms, Coulomb waves in the case of

positive ions.

Expressions for the Collision Cross-section

We would like -b compute the collision excitation cross-section of

an atom passing from the state alphaLS into the state alpha'L'S'.

In presenting y = -LMLSMslnmnm, after summation for all the final

states and the average for all the initial states (2L + 1)(2S + 1) times

decomposed and on incident spins we have:

-'!lS ~ 'L'S'] .

=2ILs~ Z Ir ~' in units of %a \(30)
,,LLMSMS|

,2 +lmm mI I

--(2L + I) (2S + I) is the statistical weight of the initial alphaLS level.

The preceding expression allows the computation of any cross-

section of neutral atoms and any inelastic cross-section of positive

ions. The matrix T is expressed simply in terms of the diffusion ma-

C
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trix S and this in terms of the R matrix (15).

TT T T
Inasmuch as the total angular moment L M and the total spin S M

are preserved separately, there is an advantage in using the coupled ex-

pression r = ocLS/LTSTM[MT in which.;each wave function will have the

form:

Y

The unitary matrices of transformation are expressed in terms of

Clebsch-Gordan coefficients:

) = (r I y') 8[= o'S'L', oSLlj CM TC mSMT.
MLMiML asM

(32)

The matrix T is transformed following:

Ty' = (y F)Trrp(F' I ). (33)
Q rr'

The collision cross-section is independent of:

QraLS -+'L'S'] = 2 2S - 2L + l |Trr 1'

L34
, T 1' T T !

The p expression represents the matrix T at-this point as being

T T T T
diagonal in 1,

T

and M , in S and M . The system being invariant due to

rotation, T is independent from M and M. In coupling L - S, T will

T TTnot depend upon the total spin S . There the 2L + I values of M cor-

T
responding to S .

I I I

Q[mLS a 'L'S'] = 2 2 ± 2 + I

(35)
(2LT + I )(2ST +I- ) Ta, TSIL, al;s1,,IT 12

1'TsT

In the coupled expression, the summation is reduced to the summa-

T T
tion of the three variables 11'L . L may possess all the values:

IL-11, IL-1+- i, ... , IL+1l.

The T matrix and the R matrix are connected by means of the exact

relation (15): T =-- iR -il'' (36)
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The R matrix is real and symmetric. It is easy to demonstrate that the

T matrix is symmetric and that the scattering matrix I - T = S is uni-

tary.

I+iR
· ... ~~~. I -- i'R (37)

from where S + S = = SS + (At-- an associated transposition).

Physically, this means that the scattered (diffused) flux equals

the incident flux. On the other hand, due to the fact that T is sym-

metric, the probability of the alphaLS state being excited to the

alpha'L'S' state equals the probability of the inverse (reciprocal)

process:

(2S + I)(2L + I )k2Q[GLS -> L'S'] (8)
(2S' + X)(2L' + I)k,Q[oc'L'S' -+ LS]. 

By computing the R matrix by an approximate and variational method

and then the T matrix by means of equation (36) we have certainly veri-

fied the principle of flux conservation, in other words we have a unita-

ry scattering matrix. Seaton(15) has demonstrated that much better

results were obtained in this manner than by applying the variational

method directly to the computation of S.

This last method applied to the Born approximation would have re-

sulted in:

T = 2iR (Born) (39)

which is identical to (36) only for all Rrr<<i , th.s T <i.'

We will designate the results obtained from the preceding equation

as Born I, and those obtained from the exact equation below as Born II:

2iR (Born I)(Born II)= -- iR (Born I) (40) 
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An analogous formula would be obtained in the case of positive ions

(CBII and CBI).

We see that in this manner the effects of coupling have been taken

into account in an indirect fashion and only to a certain extent. If,

in the Born and the Coulomb-Born approximations they have been disre-

garded in favor of calculation of the wave functions and of the radial

functions, the formula (40) shows that the computation of each term of

F !is affected by all the R terms which cannot be disregarded. We

can state that the method II considers all effects of strong couplings.

Born and Coulomb-Born Approximation.

Calculating Terms of the R Matrix

The R matrix terms are given by the equation (29), where, for reas-

ons already explained we may replace P by aLSILT.

In the following chapter we will deal with the computations of the

,Vr¥,potentials in the genera] case of complex atoms. Keeping in mind

the application to the elements of isoelectric series of Na and Li, we

shall start by the simple case of positive atoms or ions possessing only

one electron outside of the closed shells.

Vrr'= j" (P rlrar) F('I r1 r2a 2)drdr2da,. (41)

We will use the multipolar development of r- in the Legendre poly-

nome series: P(r 2 )(r, r2 ) (42)
. ., Fi2 ~ Pxr, r:)y;,(r,, r:)42

with

f~~~~~~~~~~~~~~~~~

yA(r,,r)= lrA/r%~ for r, > r 1¥,~(rx, r,)43x, X+1 for (43)
/ r'a/t'l L for > ' . '2 XX1
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Based on the theorem of addition of spherical harmonics:

PA(r. r2 ) -- 2X Iyz~r)y;Isr 2 ) (44)

It is thus possible to develop the integral (41) in terms of Xl, and

to separate the radial integral drom the angular summation.

We will always have S S' = ½ in atoms with one electron valence,

the configuration will be determined exactly by the main qdant number n.

Thus, in the coupled presentation we will have for A A'

R[nU~LtL n'l''LTI -2 (n.L|i n'L'rLT). (2n)T
n[,Ld,,Lr .2 (,L[,13 1

We can state that the only contributions (see II) which are not

- - _ - ft_ _C_ n_ . _L 4 _1_: _ _
zeroes are those for which:

L- -L'I X < L + L'
I I' II ._< __<x 1+1'

\

tit)

L + L' + el; I + I' + X. are even numbers.

It is easy, by using the multipolar development of r~] /and the wave

functions (31) to demonstrate that R'y can be presented as:

-.R
=

_ 2 /;,(LL'ILT)X (47)
with: 

LiT CLL T , ''dr,TC TJT YLJY?.IYL M-~
2 = 2MLMtr+I EL M mMIML 

MM'M"I'lk

X fYm,, YtmYiY'm'dr 2 (48

and:

, f= Fki(r2 )Fk'(r2 )fo Yx(rir 2 )PnL(rl)Pn'L'(rl)drxdr2 (49)

where the-functions PnL(r) are the radial functions of the wave func-nL

tions of the optical electron:

(nLML |~) =YLM(rL)- PnL(rl). (50XY(nLML IJr i) = r,r)rx r

I

_ ._
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By disregarding the spins in (8) we obtain, in fact:

T(rir:) = -CMmMT F(.LM . r,)Ym(r.). (51)

MLm 1

By using the composition equation of spherical harmonics:

f Y[.M(rY (r)YM'(r)dr

r(2X + I)(2L ) / LL L'?XL (52)
:

--- V [ 2LX +I j )CL, Coo

as well as the relations between the Racah coefficients W and the Wigner

coefficients 3j we arrive at a result which will be determined below by

the method of tensor operators of Racah (9) and (14):

=- ( LILTM I P(r1 . r2 ) I L'ILTM )
= (2X + I)-L(- I)L+ L

'

- 5.T

X [(21+ I)(2l'+ I)(2L + 1)(2L'+ i)] 53
CtZ'XC LL'W/''Lx)

000 000 ,)W(ULTL'"X),

The /x(LIL'1'LTX) coefficients have been tabulated by Percival and

Seaton (13).

In the radial term JR, the radial functions FkI(r2) are given by (19')

for the neutral ions and in(21) for the positive ions. We shall use the

most suitable ones at our disposal when working with radial atomic func-

tions P (r ).
nL l 

Let us take:

YX = f y¥(r, r)lnL(r2)lPnL.(r,)dr2.

In accordance-with (43) we can write:

I .
, fPaL(rI)P'.L'(rl)ridrl

JO

r. of I(54)

*+ r,, P,(r,)P, L'(r~)- dr,.
+ r'jr

It is expedient to decompose YX into two parts, one representing
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the long- range action [rs > r] , and the other which converges rapidly:

\, rI = -r+ fo PnLPn'L'rxdrl + Zx[nL, n'LnI r2] (55)

with

:r, f PnLPn'L' dr- - PnLPnL'T-drl.- (-6)

Thus, the 31, may be expressed as the sum of two integrals; the

first can be calculated by the analyticalmethod; the second, which de-

pends upon the atom properties, converges rapidly:

X ~~~~dr,
i = K PnL(rl)Pn'L'(rl)rTdrlj/ FklFk'j, X+

~~~~rso0 ra ~~~~~~~~~~(57)

+ f Zx(nLn'L' | r')FkiFk'cdr".
0

In the case of neutral atoms the integrals:

JFF dr

are reduced to integrals: 

f J J,+,(kr)Ji,+i(kr)r-kdr.

In the case of positive ions, the Coulomb integral:

TX = fFF'r-X-Ydr

converges very slowly for X = oi and X=.I.-. It is possible to find for

them analytical expressions (20).

We recognize infl a the integral PP'radr' which intervenes in.

the calculation on the probability of radiative transition S&(nL, n'L').

We have, for a dipolar transition:

S,(nL, n'L') = 2L> | { PPnLPn'LTrdr (s8);

where L> is the largest number (comparing L and L').

Having computed in this manner the terms of the R matrix we obtain

T by means of (36) and the component Q(nL -;n'L') by using equation (34).

T

Upon summation with S we obtain'.

Q[nL -n'L]- ks 2L + I (2LT+ I TLLT, nTL LT |-
L ILT

(59)
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In order to reveal the contributions of various kinetic moments we

will sum up with the l and 1''.

If we express the collision cross-section as a probability function

Q(i i):

(6o)
Q(i - i) = _k(i, i) in units of a (60)

fl[nL, n'L'] =5LT with

~~~~~LT ~~~(6i)
LT_ = _(2L

? ±+ I) I )LL fnLL, nI'LT I '

11'

II. Generalization in Cases of Complex Atoms

In cases of atoms possessing more than one outer electron outside

of closed shells, theV¥r. potentials and the terms of the R matrix are

computed by applying the tensor operators theory of Racah.

It is clear from the very expression of these potentials that there

is little difference between computations used for them and the computa-

tion of the matrix elements in terms of Coulomb interaction of the atom

hamiltonian, elements which intervene in the calculation of energy le-

vels when the configuration interaction is particularly taken into con-

sideration. It is well known that the Racah methods for complex atoms

are very efficient for such cases (9) and (14). As far as we are con-

cerned we shall apply ourselves to the computation of th \Vrr, potentials,

disregarding in the present article the exchange potentials and by con-

sidering the case of the LS coupling.

If,. for example, we study the excitation of the Fe XIV(4) we will
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find allowed transitions of the 3s23/p-, 33p2 type corresponding to

the excitation of an electron in an inner shell.

Similarly, all transitions between the fundamental level and the

first excited levels of such.elements as Be, B, C, N, -- transitions

which correspond to the important ultra-violet rays, are of the 2 s22 p l

- 2s2,pn+I. type.

Consequently, we shall give a privileged treatment to the compu-

tations of transitions of the type: 

l'n-plp ._y ['n-p-lip+!

and present the results for other types of transitions below.

The results are presented under a very general aspect as functions

of algebraic coefficients, particularly the W of Racah, the X of Wigner

and the fractional parentage coefficients (see appendix C. Messiah,

Quantum Mechanics, for tables). The calculations here are presented

for the purpose of future use in the computations of cross-sections for

elements of the series Be, B, C and N.

Expression of Potentials. -- Let us return to the expression (41) of the

Vrr,: :

:Vvr'(rN +,) = ~R, rr,+,a+
~Vrr'~(rNl)= flvr(i;+1

N+1[ rn+l)[ i] (41)

'TFr(B;,rN+,,aN+l)dR.dr,+lda,,N+l (r' # F')

where the functions ', are skew-symmetric only in relation to electrons

1, 2 ...... , N. In this presentation, the collision electron is charac-

terized by its kinetic moment C 1 before the collision,1' after the

collision) and the spin of 2. Thus, we can still write Vr' under the
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more symbolic form:
N 

V rr'(rN+lI)| (ocLSI, l/2 LTMLSTMS | E - Il, (62)i=1~~~~~~

'L'S'1 y2 LT TLST'MS)

where it is understood that the scalar product does not affect rN+l.

Instead of representing the total system by quantum numbers aLSI/2LTMTSTMT,

we may also present it by an assembly of quantum numbers as follows:

gLSMsl,/Amf.TM~.L In fact, all the operators associated to these quantum

nuTmbers inter-commute and, consequently, this assembly of quantum num-

bers is an assembly equivalent to the precedent. We. may, then, write

Vrp' in the following manner:

Vrr'(rN+1) = ( <S / ( TSMS| S ¥ 2 ,m m>
MSM S

(S' V/2 M."n, I S' T S?'M)
N

(cLSMs/, 1/2 ,nsLTM. I rI j ' LSM Y2 ;LT WT)L rN +~i I 'L'S'M;/;, ½ .;LT'Nj )

N ~~~~~~~~~~~~~~~~~(631

Inasmuch as r+ does not depend upon spins, we have:
i=l

M =M' S S' and m m'
S. S S s

The summation becomes:

Vrr.(rN+,) 2S Y2 STMT S ½/2= Mm.)

Ms m*

( S Y2 MSm, I S Y2 STIN )
N

*(oLSM,1 Y2 m.LTMT | E |'L'SM~ S Vr, mYL MAjT')L r,iW.,'L'SMJ:1 2 e
i-I1

(64)

The (JJJM I j/ 1m2n 2 ) are the Clebsch-Gordan coefficients ex--

pressed otherwise as: CmmMN.

We will now transform:
N

rN+,,i
ill



20

As in (42)

N - ' N CO

:E+,i= Z(ZTy¥(rN+,i)Px(ri.rN+l)) (65)
'- i=1 i=l X=O

P(I) is the polynome of Legendre of te X order;
k
r<

-yA(rN + 1,i)-- =+I
r>

where r< is the smallest of the lengths rN+l and r. and r>lthe largest
rN+1 1

of the lengths rN+l and ri .

Using the theorem of addition of spherical harmonics we may put

this in the following form:

E" rN+I,i ( 2 + I y(rN+)Y (rN+)Y (r)
i=1 i=1 LA

(66)
fully utilizing the fact that

Y?'(') = (-)Yz-dd '(YYgrr

and presenting:

C}(X) = ( 4 1)Y()

we see that:

rN + l,i

may be presented in the following form;
_..

N (67)

i A i=l'I*A .L j. 

Now, this appears as a sum on X of scalar products ot tensor oper-

ators, the first acting on the angular variables of theay _e second,

,on the angular variables of the incident electron. Setting it more pre-

cisely the tensor operator acting upon the atom is:

N N

I '-I = LNA(; , rN+l) = ZYA(rN+l, ri)C )(i) (68)
iI l , ii, 
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while that which acts upon the incident electron is: C(> ) r+ / -

N
In this manner

r,+l,l
i- I

is presented in the form:

N

iE l = % ' -.

(See Racah II, for example).

We then have to work out the products:

(i1ML '/2 ,mSILTMT I (U(X). C(X)) I a'SML' Y2 msl/M"'LT).

By following the same reasoning as Racah, we obtain the following

formula for this expression:

(xS.N[,L y, in~lLTMT I (U(L). C· T· MT)(.>SML l/2 ,rns/LTMy I (U(x}.C(o)) c 'SM.L' ¼ rnslLT' M L )
= 8(LT, LT')8(MT, ML')(-)L+I'-L TW(L/WL'/LT))

6S.\,L I U(X) o'SMsL') X (Y2 mel, || C(X) y mll) (69)

These are the reduced elements of the matrix (see Racah II). In the ma-
(^sj~lj(X)lXls)(cSMs.,U.[) cISM, n ')

trix element the scalar product affects all atomic vari-

ables. We shall then notice this element:

((aSM.L II U(x)jI c'S sL,')).

As for (½rn,,S I C(X) 1] '/z2nsl) , we see right away that it equals (i II lljl;). 

We can find in the Messiah book the properties of the W coefficients

of Wigner. U(x), do not depend upon spins, the element ((aSMsL 11 UX)[I M'SML'))

will be nonvariant due to rotation in relation to spins, thus it will.

not be dependent upon Ms . This fact permits us to make a summation of

the Clebsch-Gordan coefficients: -

2 S T SM | S 2 MsmS) (S 1/2 Ms/S S STM = .

MImI (70)



22

We have. for Vrr' (rN+l) 

Vrr,(rN+1)

--- Z )lI+L-LT8(LT LT')8(ST, ST')8(i, NI )'(ML, MI[ )
X

X (t, JlcIallt). W(/1L/1L', LTX) ((oSMsL 11 U(X) II ~'SMsL'))

where: (7') 

N

UOA ) = Z[J}~, i, rN+,).

Computing Reduced Matrix Elements. -- At present, we have not yet made

any supposition on the transition deemed possible and, consequently, it

is valid, irrespective of the E X F' value. (Let us note here that what-

ever this transition may be, L - L' X < L ±L'according to the very de-

finition of these elements.)

In order to have the Vrr, potentials correspond to certain given

transitions it is sufficient to calculate the reduced element of the

matrix: T = ((SMsL 11 U() 11 o'SMsL')). (72)

We shall do so for the transition recorded at the start of the.

chapter: -

(1'-P(-,S$LJ/P('hS2L,)) (LS)

- (l'~-v-,(x[SiLi)Ir+,(~S;L~j)) (L'S').

Let us first present the projection of the angular moment of the atom

(in accordance with Racah II, formula(29).)

(_)L+ML
((oSMsL 11 U(}) I a'SMsL')) V(LL'X-+ LMQ)

V(LL'?,- MTMLQ) 3
, ((I -P(TS1L1)1)P(T2S2 L2 )SLM-M,, I ,|U) (7· ,Q {

.'n-p-i(Tr;SL;)lP+'(';S[L;), SL'MsML))

The 1, M'L and Q are selected in such a mamnner that:

V(LL'X- MLML.Q)
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be different from zero.

This will give us, according to Racah III (28):

T = (_)L+L[(n - p)(p + I)]1/2(1'n-P(r,SlLl))
SaLs

31 (lr--~-,(,;S;L;),'SsL)
X LV(LL~~~~~''X p- ',l,) ''

(1, lp(rSL~ ), S' LL |,1 S + 1 (T.SL.))
x (SiLi(S.L,), S.L., SL'I SL,, 1S2 l,,(S;L,), SL')
x ((S;L;,_,(sL ,), sL, S.LMML

I U n)[.--~ -p, rN+l] I S'Li,,n-p(Sl,), S.L2 , SL'M8 M;))
(74)

The coefficients (ln-l(o1 L1 S,)lS I InaLS) are fractional parent-

age coefficients and make possible the separation of one given electron

from a group of equivalent electrons. As for the Racah coefficient:

(J1J2(J3)2 J4' J J1 J2J4(J5 ), J)

they make possible the passing of wave functions obtained in coupling

J1 and J2 with those obtained by coupling J1 with the result of the J2

and J4 coupling. The expressions for these coefficients are given by

Racah (II) and they are quite simply bound to the W coefficients (in

the case of an LS coupling). UX does not depend upon the spins and we

obtain immediately:

S1 S3

and, in accordance with Racah II (29),T becomes:

T = [(n - p)(p 1 I )]112Z#(1fn-PTSL,

I l'r-P-"(T'S;L,)liSL,)(, l, p(%SL,), S;L; t lp+'(r;S2L;))
X (S;L;, I(S 1 ,3), S2L2 , SL' I SLIIS2 L2 (S;L;)SL')
X (S'Ll/n_p(s1 L,), S2L2, SLMs[I

U(x)(n -- p)Hl Sil'/-.-p(SL3), S2L2,SL'Ms). (75)
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We can suppress, in the last reduced element of the matrix the

quantum numbers related to the spin. Actually, [jU (n - p) do not de-

pend on the spins and the three groups of electrons which intervene

from the left and the right in the scalar product have the same spins,

meaning Si ½ and S and the total spin being the same, we can, by re-1 2

vealing the wave functions of the three groups, demonstrate that the

reduced matrix element is equal tQ

((L,',1,"p'(Ll), L., L UNA(n - p) 11 LIp(L,), L2NIJ,

Then, by successively applying (44a) and(44b) of Racah III:

* ((Li, :(L,),L, La L 11 u )(n - p) t Li-(L,), L2 , L'))
= (')L2+L--L.w(LnLLLLx)w(ttLI, Lnx)

X [(2L 1 + 1)(2L 3 +- 1)(2L -1)(2L'+ i)]/ ((1'[lU(X) i 'n.
(7O'

It remains for us to evaluate ((1' 11 U(X)(n - p) 11 1)) 

UAg y= yx(rn-p,N+l)C()(n-p).

The wave functions of the electrons are, respectively:

P(m) P(rn-p ) Im 
Yi (tN-p)

rn-p

-(-i) = P n'z'(rN-P p 
r

(the spins having been suppressed a little above.)

Consequently:

((l 'IIU (n-p)II|))

= fo Pnl(r)yx(r'r +-)Pnl (r)dr X W(' II Cxl)

= yA(rN+,). (l' I C t) (77)

(I'lIlCxlli) is a classical quantity equal to:

Y~~~~~~Y

( ) [( + ) )] (o 0 oi (° 

. ~ ~ ~ ~ 0 . . .. 
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is a symbol 3J of Wigner.

Utilizing the expression of the coefficients of Racah given in

the book of Messiah, we put T in the form:

T = [(,n- p) (p + i)]Y2 (1'n-PrS1 LS L I'n-P--(qS;L;)SL,)L) (I' 11 C I

x (t, t'(T2S2L2 ),ST }IP+IT;S;L;). [(2S,-+ 1) (2S; +i) (2L + 1) (2L;.+ I) (2L, + ,) (2L'+ )j'I

X (--),-- +1 W(S .1/2 SS 2 SlS,)Y (rN +i)Z (2L--+ )W(LILLaL"L'x)

LW

X W(Lj1L'LLL2)W(l'L,1LL',X)

(78)

Using the symraetrical properties of the W, we can put the last

sum over L in the form:
3

(_) ,.L+Lf- X (2L3, + i)W(LLL2LW(LLLLL)W(LL,,XL'LIl,)W(?JLLi'L3)

L,

which is,possibly excepting a phase factor , equal to the symbol 9J of

Wigner X (abc, def, ghi). -

Thus, finally for T: ___

T ,( - p) (p + i )] Y (1'n-PTSL, I } I'n-P-i(T;S;Li) I ' S L )

X (/,/P('qSL.),$SL2 | IP+"Tc~SL;) (l'I CCX1 {I)W(S ½YZ SS2s$s)

x [(2S, + I)(2S;+ ) (2L+ I)(2L ±+ i)(2L,+ i) (2L'+ -)]½ (79)

X X(L;LI1', LT'n, L;L,/)Y(rN+,)

' Taking this expression into that of the Vrr, we will reach the de-

sired potential. -'

Starting with this expression for the potential we may see right

away what are -the X' which will intervene effectively. In the ex-

pression of (I'IIC)III) 1t 1here is the symbol I) which equals zero

except in cases wvlere I ' + X is an even number, which immediately

: i
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determines the parity of X."'? In addition, in order to avoid the (l X l
0- 0ooo

being a zero it is necessary to have the three numbers IX and '

verifying the triangular inequalities, from where 1- l < X S l+ 1.

The same applies to:W(ILI', L'LTX)?)hich will not be a zeio only in the

case where the six factors verify, three to three, the triangular ihe-

qualities (14) -.

- -The Vrr, Expressions for Certain General Transitions.

Transition 1

In(aLS) --- In('['S') (aLS) (oa'L'S')

(1) - (_ )L1~+ LT +L+L(LsT LT')8(ST, ST')8(ML, ML )a(SS ) (MT, MT)

| a,~~~L,SA

i(~llX (1) (21 + 1) [(2L + I) (2L' + I) (21, + I) (21, + 1)]½.W(1LlL'L1?) (80)X' 0 07 (O0 

r , - ~X W(11 LLiL'LTX).) n(lnoLS I nl-(c(SiL.)ILS) (In-1(',LS,)ISL' InOC'L'S)
X YA(rN+r1)

Transition 2

~I { ~1'($r1SL 3 )Iln(aSLi) LS L- l (,$S 3L,)l(S;L) 'S' ($L,) L (a}'L;)

\i I"(rN+,) = (--)L'a+'s+L-"'L(LT, LT)8($,ST, ST '"MM OMM
cg1L.SA

X ((SS')a(SS) (O 0 0) 001 ) [(21 + 1) (2/i + 1) (2L1 + 1) (2Li + 1) (2L + I) (2L' + I)] (8I)

X (21 + I). n. W(IL1 /LLX)W(ILLlL'LTX)W(LL'L,)LjL)

X (I/nSL, |n-1(oSCL2)1SL,) (n-'(ocS 2 L2 )/SL I 1/na'SlL[)Yx(rN+s)

Transition 3: :

I'n-P(.cStI.,)l,(z::2 L2 ) ) (LS) -.-- 1'-P-1(.r;SL,),P+1(-qS;L:) J (L'S')

Vr(r'<r+i) -L (L--LT+j.+(LT, |,T)8(Sf, ST')8(SS')>(MT, MT')~(MT, MT)

;X [(n - p) (p + I>] / (I'n-P(rS.L.)> I ',np-P(,rSL)/'SL1 ) (1, ,P(r:2 SL 2 ), S$1; IP +I(,rLS2L))

\/ '~ ~ ~ ~ ~ ~~T,) ',VLLL))(2
X (I' ;) (I I')W(Si ½/ SS2SS;)W(/,LL L X). X (LiL,/'L'LXL;L:X) 

0 0( 0 0 

X [(2St+ 1) (2S;+ 1) (21+ 1) (21'+ t) (2L,+ i) (2L, + 1) (2L + i) (2L' +-- )(21l + i) (21;+ )]½/2

X Yx(r,,+x)

i

- 11 11

I
I

i

I
I

i
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Transition 4

i1: (-SL.)1n(-aSL,) ILS -+ 'Q(,rS 3L.) (In-1(t ,SL,)l') (SIL) (LS')2
Vrr'(rm'+1) = (- )L '+LX,-LT+L.[n(2L + I) (2L' + I) (2L -+ I) (2L i + I) (21 - X) (21'+ l )

X

X (21. + )(2 I)] ( o)W(L ILX)W(LL LL+I.) (2

~~~~(I I .X I lW(ILI;L'LTX). (/'(;SL) I ("n-1(',SL,)tS1L1)
\o o o/ 18MT.M')(T MT')

X Yx(r,+,t)(ST, ST')8(LT, LT')8(SS )L(M,, L

We notice that (X) r.equire zero or even X ' for transition 1 and 2.

*1
In the case where L+ L'+ X is even, we can avoid a certain part of

the work by utilizing the coefficients which were listed. in tables by

Percival and Seaton (13) and which have the gceat advantage of being

easily computable. These coefficients have the following form:

-,(lLlL'LT-,) = [(21, + I) (21 + 1) (2L + I) (2L' + I)]i (0 I) (L o o o ) (-- )L+L'
'

-LTW( 1 L i L'LT) (.84)

equivalent to that of formula (53).

III. Applying Resonance Radiation to Excitation

in the Isoelectronic Series of Lithium and Sodium

We have used the Coulomb-Born method to calculate the terms of

the R matrix, the method called CB II, where the terms of the T matrix

are given by the exact equation (40) as opposed to CB I in which the T

is given by the equation (39). As a matter of fact, in order to achieve

intense transitions in positive ions, it is necessary to take into ac-

count the Coulomb field which appears due t~ the residual charge of the

ion, and, on the other hand, to consider the effects of strong zouplings.
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Solving a collision problem involves, first of all, a knowledge of

the amplitude probabilities of the atomic electron. We have used, for

the 2s and 2p states of the lithium series analytical wave functions of

the hydrogenide order (24). The use of these simple forms for the above

series is justified providing it is apparent that the quantum errors

are small and the calculations of probabilities of radiative transi--

tions attain by and large the same results, whether the Hartree Fock

functions or the hydrogenide functions are used as it is done, for in-

stance, by Bates and Damgaard (3). For 2s - 2p in lithium we find 0.75

for the oscillating force when using the latter method, which is pre-

cisely the result of the experiment.

For the states 3s and 3p of the sodium series we have used the same

wave functions as we used for Mg II, Si IV and Fe XVI. For Mg II these

functions have been computed by Biermnann and Lubeck (6) in a Thomas Fer-

mi field, taking into account the exchange potential and the polariza-

tion. The wave functions for Si IV have been calculated by the Hartree

Fock method (11). The more recent calculations of Garstang (10) which

take into account polarization effects do not modify, to any significant

extent, the preceding results. We have used for Fe XVI the wave func-

tions of Hartree Fock which were kindly passed on to us by Dr. S.J.

Czyzak.

Besides, in principle, in the development (4) of the total wave

function of the system all bound states and the continuum of the atom

must intervene. We have reduced the atom to two levels, 2s and 2p for
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the lithium series and to 3s and 3p for the sodium series. We have

mentioned above the meaning of this approximation. Only intense

transitions generated from the p and s levels can affect the cross-

section corresponding to the transition s - p. Let us consider the

case of the sodium series. If -- as is the case,-- the resonance tran-

sition 3s a 3p is optically intense (F is large )in accordance with

the Thomas Kuhn law, the other transitions 3s - np will be weak. We

find that the most intense transition generated from 3p is 3p -) 3d.

Thus it is extremely important to take into account the level 3d; this

has been done in another case, involving the case of Ca II (20) for

which we have demonstrated that disregarding the 3d level is tanta-

mount to overestimation of the cross-section 4s ->4p of 25 p. 100. In

the Li and Na series, however, contrary to what occurs in Ca II, the

energy of the 3d level above the ground level is of the order of three

times the excitation energy of the 3p level (or 2p in the case of Li).

It is quite possible to show that in this case the error made by disre-

garding the couplings with 3d is considerably smaller than 25 p. 100;

as a matter of fact, the terms of the R matrix diminish with the energy

difference E - E .
d p

Calculating the Terms of the R Matrix

T 
When te total kinetic moment L is conserved, the elements of the

T
R.. matrix which correspond to two different L , will be zero. Con-
js3

sequently, the total R matrix (which is infinite) is placed in the form

of an infinite Jordan matrix, in other words as square matrices on the
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T
diagonal. Each of these matrices corresponds to a value L . For all

practical purposes only a definite number of values of L could make

a contribution to the total cross-section Q, as the elements of the

R T
iji matrix rapidly decrease with the L . We will see that depending

upon the energy of primary electrons we will have, to take into ac-

count 10 to 15 values of the kinetic moment.

With two atomic levels s and p what will be the dimension of

T
each R(L ) matrix corresponding to the value of the kinetic moment?

By applying the coupled presentation -- as in formula (45) to a level

s (L = 0) we can associate only the kinetic moment 1=L in order to

T
obtail L . At the level p we may associate the kinetic moments to the

primary electron:

i= T, I, T=L, i=T~ : = L -I = LL = TT-- I
T

in order to obtain L . The matrices will thus be of dimension 4. Ex-

T T
cept for the case of L = 0 where only L + I can be associated to p

T T
in order to obtainL . In the case of L= 0 the matrices will!be of

the 2 order. The states of the system will be characterized by quan-

tum numbers:
r = (ns, s, LT, LT) F2 = (np, p, LT - I LT)

r3 =(np, p, LT, LT) r 4 = (np, p, LT + I, LT).

The elements of the R matrix are calculated starting from the

equations (29) and (45). After having explicited te slope coefficients

and in considering the equations (46):

Rl = - 2X 0 (sL T, sLT)

R =2 2 -2[Jo(pL T - I,pLT - I)

+ 0,2(LT- i) [2LT--I ]- ½:L(pLT-- i, pLT - I)]

RB. - 2[.O(pL_, pLT) + 0,2 X2 (pLT, pLT)]

R1 -4 4 2[,ro(pLT + 1,PLT+ I)

+ 0,2(LT + 2) [2LT + -]] :t 2 (pLT + I,pLT + I)]

111R2 =-2 [(6L + , R1 (SLT, pLT - )]
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\[ (6L + 3) ]'(sLTpLT + )31
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R2,= -2 [ ,6 (LT(LT+ I )) A2(pLT_ i, pLT2_ I )I2T=- 2+ 

Rl3=0 R2= 0 R34 = 0.

In calculating the terms of the R matrix, as in the equations (41)

and (45) we neglected the short-range terms which are due to the closed

shells.

We will note that R33 is uncoupled and that, consequently, it will

intervene only in calculations relating to the p-> p transitions. On

the other hand, the diagonal terms and the terms R24 the elastic terms,
24'

rapidly become very small for LT > 2 ,as compared to the inelastic terms

R14 and R3. This is quite fortunate as their calculation by approxi-
14 13'

mation as devised by Born brings very unsatisfactory results. We can

demonstrate, in fact, that radial terms. soe and 2 ].- are "short-range"

terms which essentially cause the intervention of small values of the

variable radial r, meaning of areas where it is impossible to';state whe-

ther the collision electron is placed in a Coulomb field. If diagonal

terms are to be taken into account and correctly calculated it is ne-

cessary to solve the system of coupled equations (13). One of us per-

formed this task (5) and arrived at the following result: the solution

of coupled equations actually shows only 10 p. 100 difference with re-

sults obtained for the inelastic cross-section s -Vp of Be II with low

energy, as shown by results obtained by using the CB II method, used

here disregarding the elastic terms (See fig. 4).

The cross-section Q (nL -J'n'L') given by the equation (59) will

bring about the intervention only of the T12 and T14 inelastic elements.

We have now demonstrated that the influence of small R.. elastic terms
13

was small. The R matrix which we shall calculate will have the simple
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form: o n R4

1A .. 11 o o 0 (86)
R14 0o 0o

In applying formula (40) to the CB II approximation:

-2Rt2 - - 2iRi,,T_ - 2iR,2 Tr4 - - 2R 4=. (87)
± +R1+± R i4 + Rx, + R%'

In the CB I approximation equivalent to the Born approximation:

1'12= - 2iR1 2 'I'14= - 2iR, 4. (88)

The cross-section will be expressed as:

Q[nL = o, n'L' = I] = 2 L ++ I)
Lr

[Tr,2,(I.,T -> L T + I) + T2(LT - LT I)] (89)

All calculaions relative to-the radial terms axi whose expressions

have been presented above have been built according to the methods ex-

plained by one of our group (20).by means of ordinators 650 and 704 IBM.

Results

Results for transitions 2s - 2p of the four elements of the Li

series and for transitions 3s - 3p of three elements of the Na series

are presented in tables I and II. It is thus possible to obtain by

interpolation the cross-section of any desired element in each series.

Table I Lithium series Q;CB i
i

e [ (C13 11).

Be 11 CIV OVI Mg X

,I I Ctll (;n I CI II GCBI CBI 11 C13I C3 11

14,23 9,983 5,01o5 4,669 2,526 2,456 1,208 1,200
2 16,73 !3,44 5,588 5,304 2,812 2,754 1,318 1,307
3 17,80 15,03 5,940 5,694 2,963 2,911 1,372 1,360
4 18,38 16,04 6,133 5,915 3,047 3,oo000 1,404 1,395
5 18,96 16,95 6,269 6,074 3,180 3,137 1,433 1,424L 6 19,58 17,73 6,438 6,261 3,312 3,271 1,450 1,440I~~~~~~~~~~,7 i,5 ,4
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Table II

Sodium Series

.- Mg 11 S IV Fe XVI 

X _. i

CB I C13 11 CI; ICI ( 1 (.I :111 

l 17,69 11,74 10,47 9,351 1,712 1,69
1,5 19,89 14,60 1 1,:2 ),958 1.756 ,74i2

21.75 fi,g8 t 1,7a wo,06, 1,871 ,78,;
4 27,41 24,02 13,65 12,88 1,952 1,939

In these tables we present the probability values D(s-p) bound

to the cross-sections by the relation (60).

Q(nL -->'L') 2L I (nL, nI), (89)
2L ± 'k' 'L)L(

in units of Cm

k is the initial kinetic energy in Ryndbergs.
nL

The results are presented as a function of the relation of the

initial kinetic energy and the energy difference E ,L-> EL:

k~~~n,

X =(En'L'- EnL) Rydbcrgs (90)

It should be noted while studying tables I and II that in the high

energy areas there is but a small difference between the CB II approxi-

mation and the CB I approximation, which is equivalent to the Born ap-

proximation for neutrals.

On the other hand, as we become involved with elements more strong-

ly ionized, the CB I approximation becomes better and sometimes even

sufficient, even at the excitation threshold ( X = 1). In fact, the

influence of the Vrr coupling terms in coupled equations (13) becomes

secondary when the residual charge of the positive ion increases to a

large extent.

i

I

I
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The cross-section values are presented in figures 1 and 2. Inas-

much as these vary greatly as Z-4 (which would be the case of purely

hydrogenoid ions), but more precisely as the square of the relation of

excitation energies, we have transformed the results in order to be able

to trace them on one chart.

It should be noted that in Figure 2 the curve relative to Mg II

does not run above the two other curves as could have been expected.

The results presented in these figures are those obtained using the CB

II approximation; yet it is immediately apparent from looking at Table

II that in the case of Mg II the effects of coupling (CB II - CB I) are

particularly important. The resonance transition 3s - 3p of Mg II is

highly intense (f = 0.90), thus, similarly, the elements of the matrices

R12 and R14, as we shall see later on; this fact exolains the important

difference between the approximations (87) and (88).

The dipolar terms of thk R matrix vary as //1 g, thus they decrease

-2as Z-2 in the first approximation. The coupling effects thus become

rapidly negligeable when Z increases.

It would seem to be of interest to present certain results in re-

T
lation to the contributions fo different kinetic moments L . We pre-

sent the values of the ? for Mg II and Fe XfI in Figure 3. We have:

[l[nL, n'L'] = f2n(nL, n'L'). (91)

We can see that the contributions of small kinetic moments diminish

when the electron energy increases and also when the residual charge in-

creases. This contribution is always small and this is sufficient to
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justify the use of the method applied by us. This method is in fact

T
deficient for the small values of L which correspond to the "appro-

ximated" collisions for which the exchange effects and the exact form

of the potential close to the nucleus are very important. As stated

above, we have also disregarded in the calculations of the matrix R the

elastic terms, but the latter intervene in a significant manner only

in the cases of LT= 0 or l.-
T

\~~~~~~~~~~~~~~~~~~~~~~~~~~~

ER Z E(BeH ) 2

5'1E
1

(,I)

56rie du Lithium 2S. 2P S~rie du Sodium

40

C37~~~~~~~~~~~~~~~~~~3

I~~~~~~~~~~~~~~~~~~~~~~~S .

MG~~~~~~~~~~~~~~~~~~~~~~~~~M]
20

\\ ~ ~ ~ FG 1 20 ;Q.(Er 

FIG. I.

Fe ,3

lo 2 X

FIG. 2.

Consequently, if only a very limited confidence should be exten-

DT
ded to the results of L for LT= 0 or 1, the error made in this man-

ner will affect in a very insignificant way the global result .
The calculations in relation to the positive ions are, thus, much more

reliable than those in relation to neutral atoms, for which the small

\
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T
values of L which correspond to the "approximated" collisions for which

the exchange effects and the exact form of the potential close to the

nucleus are very important. As stated above, we have also disregarded

in the calculation of the matrix R the elastic terms, but the latter

intervene in a significant manner only in the cases of LT= 0 and 1.

Consequently, if only a very limited confidence should be exten-

T
ded to the results ofT L for LT= 0 or 1, the error made in this manner

L T

will affect in a very insignificant way the global result S . The

calculations in relation to the positive ions are, thus, much more re-

liable than those in relation to neutral atoms, for which the small

T
values of L

T
are more important at low energies.

If we look for partial sections, which would correspond to the

transitions between tio definite levels by quantum'numbers nLSJ where

S is the spin and J = L + S the total angular moment, we will notice

that the total system will be either a singlet or a triplet:
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(ST = I, ST = o)

Q(nLS, n'L'S') = 2 (2LT+ I) (2ST+ I) IT I'
2TLT (92)

= 2Q(nL, n'L')

T
because T is independent from S when the exchange and the spin-orbit

are disregarded.

Consequently, inasmuch as S = 2 in relation to the initial s level:

i
Q[nLS - n'L'S'J = Q[nL n'L']. (93)

On the other hand, if there is the case of an LS coupling we can

demonstrate that for a transition coming from the s level:

Q[nLSJ - in'L'S'J']
2J' + I

O(gS' + I) ('L' ± ) Q[nL$ S- n'L'$S', (94)

In other words, the partial sections are in relation to the sta-

tistical weights:

: Q[ 2 1 7 2] = 3 Q ~s (95)
Q. 1p]=32[S -] I

2 · 3 2 Q[L - p].

The Bethe Approximation

in' the Case of Positive Ions

The Bethe approximation is generally considered as a simplifica-

tion of the Born approximation, quite valid in the case of high energies

* 4 - 4-
when the deflection K = - K. is small in relation to the initial

impulse of primary electrons.
impulse k. of primary electrons.

1
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We can find the Bethe approximation by a process which is quite

different and valid for neutral atoms as well as for positive ions (21).

It is sufficient to give to the electrostatic interaction term for any

value of rI and r
2

its form as deduced from (42) when r 2 > rl which ac-

tually means that there is a supposition that the collision electron is

still outside the atom:

r,.*~~ = (r,.r2 n~(96)
ri

This approximation is in fact valid for the large values of L
T
for

which the small values of r2 do almost no intervening.

We shall notice that the calculations of integral radials and of

the terms of the R matrix are then considerably simplified. We have,

in relation to formula (47):

R[nLLT, n'L'I'LT]

-2/,(LIL'ILT) Fklkf dry Pnrdr[ikFF't' I PflLfl'n'rdr (9;)f ~r_2 fJo,

for a dipolar transition. The approximation (96) evidently, cannot be

applied in the cases of elastic terms or to the A = 2 terms of quadri-

polar transitions in which the electrostatic interaction near the nu-

cleus (r small, L
T

small) plays an important part.

The Bethe approximation, in addition, implies another approxima-

tion, that which consists in using (88), meaning the disregard for any

effect of strong coupling.

It can be shown that., in this case, the very simple expression of

Bethe is regained. Having recognized the elements of the matrices

f l'oL"'L'rdr of the probability of the dipolar radiative transition, we
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obtain (21):

Q[nL -. n'L']

8= 1 1,, (n'L', nL) g(/kL, A.'L') (98)
-VA 3- En'l "'

. enrwhere I,, is the ionizati.on'or.Yhydrogen.

The oscillator force f is expressed:

zE E L> ~~~~~~~~~~12
((n'L', nL) = ] 'fl'L' nfLrL

3 0
(99)

) s L~ 2~L _ | + lflLL flL'rdr |

where L> is the largest of the nursbers L or L'.

The Gaunt factor g is expressed: . -.

g(knL, kn'L') f2 V _ > I f kk' r2 (dio)

In the case.'of neutral atoms the collision electron is presented

after as well as before the collision by plane waves, the functions of

F are the Bessel spherical functions and we regain the well-kno,.n form:

V3i (k + k')
S(ik'I') = . -log (l (-og)7C ( k - ')(o)

We shall designate the Bethe approximation by CB'I; it consists in

utilizing the formula (98). The results are presented in Tables III

and IV.

Table III

Lithium Series; . values

Be CIV OVI I C

Bethe 13c1.hc II Bethel B/the II Bethe I Bethe II Bethe I Bethe IBethe Bethell ~~~~ ~~Bethe I Bethe 1

I 26,52 14,04 7,373 6,649 3,411 3,232 ,265 1,254
30 9 i86 8,22 7,540 371 3822 30,9 86 8,224 7,54 3,731 3,620 1379 1,368

3 33,61 2113 8,855 8 5 3,989 3,878 1,435 I,425

4 35,51 22,82 9,302 8,58o 4,190 3,995 476 1,465
5 37,19 24,30 9,652 8,900 4,338 4,224 1 ,5o8 1,497

6 38,42 25,32 10,025 9,239 4,487 4,374 1,529 1,512

Table IV

Sodium Series; n values
Mg 11 Si IV Fe XVI

X
Bethe I Bethe II Bethe I Bethe II Bethe I Bethe 11

45,22 16,98 19,59 15,04 2,172 2,147

. 49,25 21,02 20,78 16,32 2,250 2,226

52,85 24,46 21,92 17,59 2,329 2,302
64,06 34,65 25,81 21,18 2,609 2,583
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We can immediately conceive the possibility of performing the

first approximation (96) without performing the second (88), which am--

ounts to taking into account --- in spite of anything -- the effects of

strong coupling. This second method will be designated by Bethe as CB'

II. It will consist of calculating terms due to- (97) and to then uti-

lize the precise formula (87). As it is quite easy to calculate the

integrals which appear in (97) for which analytical equations exist (20),

we gain, in this manner, the possibility of easily obtaining results

which prove to be considerably better than could be expected.

The figures 4 and 5 present cross-sections Q(2s-4 2p) for Be II

and for C IV, as we have devised them. We can see that in relation to

the most effective approximation (CB II), it is the part played by the

coupling in CB'II, in bringing in the most important correction to the

Bethe approximation CB' I as in the case of Be II. This phenomenon is

more apparent still in Mg II (22) and is dependent on the intensity of

resonance transitions in Be II and Mg II.

-1 Different approxi-
mations in C IV

QC2s-_2P] i CB

Different approximations in Be II 2CI1

2: ;.( ,'FCB[ . 3 c5.:'O. .

70 \ \7 ~~~~hC EYL

~ olution equations- coupled

5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Erlz

-- ~~~~~~ ~~ ~~~~~~~~~~~~~~ 2 3z 4'

FIG;.4. FIG. 5.
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When Z increases, on the other hand, the part played by the strong

coupling effects diminishes and there remains, between the two approxi-

mations (that of Coulomb-Born and that of Bethe), the only difference

brought about by the use of (96). This difference itself decreases gra-

dually as we deal with more strongly ionized elements and this is un-

derstandable when -- as in Figure 3 -- we perform'the decomposition into

sub-waves.

It seems suitable to express all these effects in terms of an empi-

rical Gaunt factor ~ defined by the formula:

87= I I
Q >/k Ef Ez'- " ()g en 7rao (102)

In order to determine the g we will calculate Q by the CB II and

CB I method. 'We find for the Na series:

- - Table V

Mg II Si IV Fe XVI

X

ClI CI C 11l CBII CI CB11

I,0 o,426 o,282 0,567 0,496 o,816 o,8o8
,i5 0,479 0,352 0,603 0,540 0,837 0,830

2 0,524 0,409 0,635 0,578 o,8S 0,850
4 o,661 0,579 0,740 o,698 o,930 o,924

We find that not very far from the threshold the g is of the unit

order. This means that when Z increases, the Bethe approximation pro-

vides the best results. In several previous articles (16) (23) it has

been suggested that, in general, the g = 0.2 near the excitation thresh-

old. This empiric determination of g is the result of reduction of a

certain number of measures and calculations made for slightly ionized
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elements. It is also in accordance with the results achieved by

Burgess (7) for hydrogen ions.

J

When g increases with Z in a much more rapid manner than forseen

by the Burgess results it means that, contrary' to the processes in the

isoelectronic series of H, the oscillating forces decrease with Z, which

diminishes the effects of strong couplings. On the other hand, the

effect of the repelling screen of the inner-shell electrons diminishes

the probabilities of approximated collisions for which the Bethe (96)

approximation is no more valid.

Comparison With Results of the

Semi-Classical Theory

The semi-classical theory, also called the impact parameter theory,

is widely used in nuclear physics (I) and in collision problems of

heavy particles (2); it has recently been applied by Seaton (17) to the

computation of inelastic collisions of neutral atoms and electrons.

A. Burgess has expanded the method to the case of positive ions.

In the majority of cases it is possible to obtain a good evaluation of

the section radius in the integration over the collision parameter and

find, in this manner, precise cross-sections for dipolar transitions,

cross-sections with high'energies and better results than those achieved

by using the Born approximation with low energies:

- Q(ij)= Pij(R)2r-ldR (1o03)
Q(iwhere the excitation probability P( epends mainly upon the oscil-

where the excitation probability P..~(R) depends mainly upon the oscil-
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lation force f(j, i) and where R, the section radius can, generally,

be considered as being equal to the smallest of the median radii of

r. or r, becoming r 
1

The comparison of our results (CB II) with those obtained by

using the semi-classical method (sco) are presented in figures 6 and

7. We can see that there is a complete agreement as far as the first

elements of the series are concerned. The two curves practically co-

incide in the case of Mg II.

The agreement is satisfactory for the sodium.(17). In figure 7,

presenting Na the solid line curve is that of experimental results.

Starting with the Vainstein calculations (19), Sommerville (18) has

demonstrated that using a method only slightly different from the Born

II method it is possible to establish 3s -' 3p results only slightly

different from experimental results.

2GG 1 Fig. 6 :5 ig. 7

I ea for the Li series F e 

'- MGM- 400 _ _ 

,-~ ,-~ -___ -z2Q .for the Na serie

|: ,_-- .001~~~~~~~~~~~~~~~.303.
... ~17

' " " ' ~

" .]00 R ~~~~~~~~~~~~~~~SC.0

10o

o v v _

/: ~ ~ ~~_ _ .--- -

I - C.B0
I __ S.C.o

zoo =

---- -I L

I K.

, 2 3 L -1 23 3 4. x

~* For strongly ionized elements the semi-classical approximation be-

comes less satisfactory. As the Z auguments, the f(ji) decreases with

es

'I
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2
Z while the energy difference AT- increases as Z. Thus the re-

lation tends to become zero. Yet, Seaton (17) has shown that in

this case it was not possible any more to take R = r and that it was

necessary to determine R in such a manner as to find the exact cross-
0

sections with high energies.

In any case the difference does not exceed 20 p. 100 and the semi-

classical method makes possible to obtain, quite easily, a good evalua-

tion of collision cross-sections. This shows again, that in the exci-

tation of transitions optically permissible, large values of the L play

a predominant part, the values with which an impact parameter may be

made to correspond when the collision electron is displaced along a clas-

sic trcajectory.

We would like to take this occasion to thank Prof. M.J. Seaton of

the University College (London) who has introduced us to the collision

theory and we owe to him the existence, in the Meudon Observatory, of

a group interested in this chapter of physics, indispensable to the

progress of astrophysics as a study of ionized media. We also owe gra-

titude to the doctors S.J. Czyzak and A. Burgess who gave us permission

to use articles not yet published. We will end our article by expres-

sing the wish to have more contact among all those in France who are

interested in problems of atomic collisions.
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